
Building Secure Software
at Enterprise Scale

EXECUTIVE SUMMARY
There are innovative methods for performing static analysis of application code
that results in secure, higher-quality software at a significantly lower cost and
level of effort. These methods move the testing as close to the coding process
as possible, providing real-time analysis in the development environment. These
methods drive efficiencies by seamlessly complementing the cadence of software
development. In their fully evolved state, these innovative tools provide actionable
and contextual help to fix and prevent security vulnerabilities.

When compared to the traditional find-and-fix cycles that occur much later in the
development lifecycle, these new methods represent a significant reduction in costs
and developer resources. Equally important, use of these evolved tools greatly
reduces the need for critical security resources to remediate identified defects.
This frees up security personnel to address more strategic security challenges in
the organization and removes them from the critical path in completing releases
on time.

The benefits to the organization are abundant. Moving testing to the Integrated
Development Environment (IDE) results in code that is more secure, which, in turn,
reduces security risks. Development timelines are not threatened by security
defects detected late in the lifecycle, decreasing the risks of missing deadlines
and saving money by more effectively using scarce resources such as security
analysts. These new approaches operate at enterprise scale and readily support
the growing adoption of agile methodologies.

WHY DOES THIS MATTER?
It is an immutable law of application development that the cost of finding and
remediating any defect is dramatically reduced when the defect is found early
in the development lifecycle – the earlier the better. Finding and fixing security
vulnerabilities is a vital and necessary part of the software development process.
However, the trial-and-error approach to scanning and remediating code adds
a significant amount of time to the development process, which risks delaying
the delivery of product upgrades and enhancements—eroding the organization’s
competitiveness and threatening revenue.

Application scanning remains a critical tool in ensuring the security of those
applications. Unfortunately, because application scanning occurs so late in
the development lifecycle, security defects aren’t discovered until they’re very
expensive and time-consuming to fix. Even the costs of hardware, software, and
personnel required can be staggering: organizations with comparatively modest
application portfolios easily spend millions of dollars per year.

Today, application security professionals sink hours upon hours into scanning
applications and working with developers to fix simple bugs rather than applying
their security expertise to higher-impact, business-critical issues. The output of
these scans—a lengthy report outlining thousands of issues across an entire
application—requires hours of prep work by a small team of security personnel
before it is ready to hand off to the development team for remediation. With
little to no guidance outlining how to fix these vulnerabilities, developers are
pushed into another development loop focused on remediating and retesting
the application.

Building Secure Software at Enterprise Scale | 2

It is an immutable

law of application

development that the

cost of finding and

remediating any defect

is dramatically reduced

when the defect is

found early in the

development lifecycle –

the earlier the better.

“

”

Often, a single bug can take hours to fix, since the developer is forced to go back
and work on code that he or she checked in days—or weeks—ago. Occasionally,
the original developers are no longer available to work on the fixes; they have
been assigned to other projects or have other priorities. This results in new
developers repairing someone else’s code—and often unwittingly introducing
new vulnerabilities.

THE SEARCH FOR ANSWERS
There are many different ways to improve application security (see Different
Approaches to Building Secure Code side bar starting on page six), but no
single approach can guarantee secure, vulnerability-free software. Human-
dependent code review—like peer review—is prone to error; conversely, highly
automated review is fast and efficient, but fails to detect numerous issues
without clearly defined guidelines. The result is that each organization’s team of
security experts is overly taxed and become a barrier to shipping products, which
could impact revenue.

3 | Building Secure Software at Enterprise Scale

DEVELOPMENT TEAM VULNERABILITY
REPORT

SECURITY

DEVELOPMENT
CYCLE #1

DEVELOPMENT TEAMSECURITY

DEVELOPMENT
CYCLE #2

VULNERABILITY
REPORT

DISJOINTED, INEFFICIENT APPROACH TO APPLICATION DEVELOPMENT AND SECURITY

Security Bug Security Scanner

Automated application security has fairly primitive origins. Early code review
tools lived on individual developer workstations, which let security teams gather
vulnerability information earlier in the development process. By all accounts, this
approach was great; it effectively reduced the number of bugs and developers
actually used it—but it couldn’t catch everything. The tools were extremely limited
in the diversity of vulnerabilities they could detect.

Application security assessment vendors pushed to expand the capabilities of
their tools to identify a broader spectrum of vulnerabilities. This caused the size
of security testing tools to balloon, making them impractical to run on a developer
workstation. These new, industrial-strength static security assessment tools
needed hours to scan a single application on a centralized server and required
someone knowledgeable to manually vet, prioritize, and assign vulnerabilities to
developers for repair. As a result, these tools became highly dependent on skilled
security personnel to scale.

The deficiencies with these tools became increasingly problematic as adoption
of agile development methods expanded. The short, continuous development
sprints used by agile developers are incompatible with the labor-intensive process
of finding and remediating security defects. For example, agile developers would
be tasked with addressing vulnerability scan results from a sprint they completed
months earlier. In some cases, the developers are given scan results from several
sprints at once, leaving them to map thousands of vulnerabilities back to the exact
sprint, developer, and line of code. As a result, many agile shops don’t bother
scanning their code after every sprint, leaving security vulnerabilities to linger in
the code base for months.

THE ANSWER EMERGES IN THE NEXT GENERATION OF
IDE-BASED CODE REVIEW TOOLS
Clearly a better approach was needed that enables developers to identify
vulnerabilities earlier in the lifecycle and provides actionable guidance to help
developers fix the problem. By extension, the process becomes a learning tool
that instructs the developer how to avoid the same problem in subsequent code,
moving the process from finding and fixing to preventing problems. To more
effectively target organizational-specific security concerns, the tool would provide
the flexibility to incorporate organizational policies and guidance into the process.
These possibilities are being realized in a new generation of IDE-based code
review tools.

Far more advanced and lightweight than their early predecessors, IDE-based
code review tools are fast enough to run behind the scenes while a developer
writes code—eliminating the need for a separate, cumbersome scan. Even better,
modern tools include security remediation advice directly within the developer’s
coding environment, obviating the need for oversight from the security team. The
result is a cleaner, more streamlined process where developers fix a large number
of frequently-occurring vulnerabilities before they ever check their code into the
codebase, when it is easier and cheaper to do so.

Building Secure Software at Enterprise Scale | 4

In their fully evolved

state, these innovative

tools provide actionable

and contextual help to

fix and prevent security

vulnerabilities.

“

”

Equipping developers with security awareness and responsibility also serves to
reduce the workload of application security teams. Rather than spending hours in
the trenches vetting thousands of common defects and taking an artisan approach
to remediating detected defects, security personnel can spend their time working
on high-value security issues. The more advanced tools enable security teams
to capture organizational policies and embed them as rules in the analysis tools,
enabling institutional knowledge to be integrated into the process.

SUMMARIZING THE BENEFITS
Lightweight IDE-Based Code Review tools offer many advantages and benefits to
organizations of all kinds:

• Reduce Risk. Help developers fix security vulnerabilities before they
are committed to the code base, and prevent common issues from ever
being introduced.

• Decrease Costs. Enabling developers to fix defects in real-time is orders of
magnitude less expensive than scanning completed applications for defects and
entering a fix-and-retest cycle. Early detection and remediation may remove
potential delays in releases and prevent patch cycles, eliminating the significant
costs associated with each.

• Increase efficiency. These tools provide a tight feedback loop by alerting
developers to each issue and immediately showing them how to fix it.

• Expand knowledge. Teach developers the right way to code in their
development language, eliminating recurring defects ad further
enhancing efficiency.

5 | Building Secure Software at Enterprise Scale

DEVELOPMENT TEAM SECURITYSECURITY VULNERABILITY
REPORT

SCALABLE, STREAMLINED APPROACH TO APPLICATION DEVELOPMENT AND SECURITY

IDE Code Review Tool Security ScannerSecurity Bug

EVALUATING LIGHTWEIGHT CODE SCANNING TOOLS
There are already several IDE-based tools on the market, though the feature sets
vary widely between each. Many lack critical functionality that enables developers
to work smarter and more efficiently in their native workspace. When evaluating
IDE-based tools, look for the following key components:

FEATURE/FUNCTIONALITY WHY IT IS IMPORTANT

Just-in-time scanning Flags and explains issues as the developer codes in
the IDE, so it’s fixed before the code is checked in

Language-specific guidance Teaches developers how to fix their code
independently with pragmatic, actionable advice

Customization options Helps organizations find defects more effectively
with rules customized to their specific policies (like
cryptography)

Reporting capabilities Delivers insight into wide-spread development issues
and highlights improvements over time

IDE-BASED TOOL SPOTLIGHT: CIGITAL SECUREASSIST
Cigital SecureAssist is a lightweight static analysis tool that enables enterprises
to find, fix, and prevent vulnerabilities before code leaves developers’ desktops.
The tool flags vulnerable lines of code, explains why they are a problem,
and shows developers the secure way to write the code in their own development
language.

As an IDE-based tool, SecureAssist
fits perfectly within an agile
development workflow. By delivering
remediation guidance (written by
trusted security experts) while code
is being created, the tool allows
developers to fix vulnerabilities
without slowing them down—and
without the need for a cumbersome,
time-consuming security scan.

SecureAssist greatly reduces the strain on security teams by eliminating the most
common application security problems during the development process. Since
fewer problems make it out of development, application security professionals
have significantly more time to concentrate on higher-value issues.

The tool is also robust enough to satisfy the governance needs of larger
organizations. SecureAssist can be modified to address organization-specific
policies and procedures with custom rules and guidance. Enterprise customers
can use an online reporting portal to access trend data and get insight into the most
pervasive issues—and developers’ improvements over time—at their organization.
As patterns surface, administrators can identify gaps in security knowledge that
they can incorporate into future training.

Building Secure Software at Enterprise Scale | 6

DIFFERENT APPROACHES
TO BUILDING SECURE CODE

PEER REVIEW
Developers review each other’s
code before it is shipped.

 cheap, easy to implement

 highly dependent on
developers’ security knowledge;
time-consuming; prone to error

SOFTWARE ASSURANCE
POLICY STATEMENT
Formal policy outlines
requirements for secure software
development, with policy and
coding guidance to achieve
stated policy.

 easy to implement

 limited adoption; no
enforcement; no verification
of results

SECURE CODING EDUCATION
Developers take courses and
attend workshops on secure
coding practices.

 thorough; hands-on

 expensive and consequently
not provided to all developers;
not reinforced

CODE REVIEW “FACTORY,” OR
CENTRALIZED SCANNING
Code is scanned by a
comprehensive tool. The results
are triaged by small teams of
security experts who then
assign each issue to a developer
for remediation.

 thorough detection of
security issues

 doesn’t work well with
agile development processes;
tools can be expensive to
license and complex to use;
fixing vulnerabilities late in the
development process is costly;
security teams become
a bottleneck

CONCLUSION

Development teams are stuck in an onerous position. On one hand, they are
under increasing pressure to turn around new code at an ever-increasing pace
through approaches such as agile development. On the other, developers face the
pressure of defending applications from constantly evolving threats. An effective
way to overcome this challenge is to equip developers with a way to detect and
remediate defects in real time when the costs and risks are lowest.

The evolution of application security assessments continues as mature
software security initiatives strive for greater efficiency. Integrating lightweight
secure code development tools early, within the IDE, greatly reduces the
time required to find and fix issues from hours to seconds. Developers are
provided actionable intelligence to fix defects without the need to involve
critical security resources, freeing those resources to address the myriad of
other risks facing the organization. This enables organizations to develop their
applications more securely and more rapidly, while reducing costs and risks across
multiple dimensions.

FOR HELP SCALING SECURE CODE REVIEW AT YOUR
ORGANIZATION, CONTACT CIGITAL AT:
North America: +1 (800) 824-0022

EMEA: +44 808-189-0628

7 | Building Secure Software at Enterprise Scale

DIFFERENT APPROACHES
TO BUILDING SECURE CODE
CONTINUED

CODE REVIEW AS PART OF
BUILD PROCESS

Lightweight static analysis tools
review software as code is
checked into a repository.

 integrates with agile workflow;
can create control standards

 occurs after code has been
submitted (long feedback loop);
risk of “breaking the build” during
overnight build process

CODE REVIEW IN THE
INTEGRATED DEVELOPMENT
ENVIRONMENT (IDE)

Security reviews conducted
within the IDE to find (and fix)
vulnerabilities as developers code.

 high developer adoption;
prevents security defects
from entering the code base;
lightweight/fast; inexpensive
(relative to centralized static
analysis tools)

 triage and remediation help
still required from security team
if guidance is weak or false-
positives are high; limited breadth
of detectable vulnerabilities

Cigital
21351 Ridgetop Circle
Suite 400
Dulles, VA 20166
www.cigital.com

© 2014 Cigital

